the point G (-7,6), H (-1,4), I (0,7) and J (-6,9) form a quadrilateral. find the desired slopes and lengths then fill in the words that best identifies the type of quadrilateral

To answer this question, we will use the following formulas for the slope and the distance with two given points (x₁,y₁) and (x₂,y₂):
[tex]\begin{gathered} \text{slope}=\frac{y_2-y_1}{x_2-x_1}, \\ \text{distance}=\sqrt[]{(y_2-y_1)^2+(x_2-x_1)^2}. \end{gathered}[/tex]Applying the above formula for the slope we get:
[tex]\begin{gathered} \text{slopeGH}=\frac{6-4}{-7-(-1)}=-\frac{1}{3}, \\ \text{slopeHI}=\frac{4-7}{-1-0}=3, \\ \text{slopeIJ}=\frac{7-9}{0-(-6)}=-\frac{1}{3}, \\ \text{slopeJG}=\frac{9-6}{-6-(-7)}=3\text{.} \end{gathered}[/tex]Therefore, GH and IJ are parallel and both are perpendicular to HI and JG. Also, HI and JG are parallel.
Using the formula for the distance we get:
[tex]\begin{gathered} \text{lengthGH}=\sqrt[]{(6-4)^2+(-7-(-1))^2}=\sqrt[]{4+36}=\sqrt[]{40}, \\ \text{lengthHI}=\sqrt[]{(4-7)^2+(-1-0)^2}=\sqrt[]{9+1}=\sqrt[]{10}, \\ \text{lengthIJ}=\sqrt[]{(7-9)^2+(0-(-6))^2}=\sqrt[]{4+36}=\sqrt[]{40}, \\ \text{lengthJG}=\sqrt[]{(9-6)^2+(-6-\mleft(-7\mright))^2}=\sqrt[]{9+1}=\sqrt[]{10}\text{.} \end{gathered}[/tex]Therefore, the parallel sides have the same length.
Answer:
[tex]\begin{gathered} \text{slopeGH}=-\frac{1}{3}, \\ \text{slopeHI}=3, \\ \text{slopeIJ}=-\frac{1}{3}, \\ \text{slopeJG}=3\text{.} \end{gathered}[/tex][tex]\begin{gathered} \text{lengthGH}=\sqrt[]{40}, \\ \text{lengthHI}=\sqrt[]{10}, \\ \text{lengthIJ}=\sqrt[]{40}, \\ \text{lengthJG}=\sqrt[]{10}\text{.} \end{gathered}[/tex]The quadrilateral is a rectangle.