Step 1: We shall state the Compound Interest formula.
[tex]A=P(1+\frac{r}{100\alpha})^{n\alpha}[/tex][tex]\begin{gathered} \text{Where A = amount =?} \\ P=Pr\text{incipal =\$10,000} \\ r=\text{rate = 4\%} \\ n\text{ = number of years = 5 years} \\ \alpha\text{ =number of periods per year = 2 (Since, it is semi-annually)} \end{gathered}[/tex]Step 2: we shall substitute the values of the parameters in the formula.
[tex]A=10000(1+\frac{4}{100\times2})^{5\times2}[/tex][tex]\begin{gathered} A=10000(1+\frac{4}{200})^{10} \\ A=10000(1+0.02)^{10} \\ A=10000(1.02)^{10} \\ A=10000(1.21899) \\ A=12,189.944\approx\text{ \$12,189.94} \end{gathered}[/tex]Thus, the correct answer is $12,189.94 (option