how to find principal and annual interest rate if time to double is 11 years and future value after 10 years is 2100?

Let's begin by listing out the given information:
Amount after 10 years = $2,100
Time to double = 11 years; A = 2P
The formula for compound interest is given by:
[tex]\begin{gathered} A=P(1+\frac{r}{n})^{nt} \\ After\text{ 10 year}s\text{, we have:} \\ A=2,100,n=1(annually),t=10 \\ 2100=P\mleft(1+\frac{r}{1}\mright)^{1\cdot10} \\ 2100=P(1+r)^{10}-----1 \\ \\ After\text{ 11 year}s\text{, we have:} \\ A=2P,n=1,t=11 \\ 2P=P(1+\frac{r}{n})^{1\cdot11} \\ 2P=P(1+\frac{r}{1})^{11} \\ 2P=P(1+r)^{11} \\ \text{Divide both sides by }P\text{:} \\ \frac{2P}{P}=\frac{P(1+r)^{11}}{P} \\ 2=(1+r)^{11}----2 \\ (1+r)=\sqrt[11]{2} \\ 1+r=1.065 \\ r=1.065-1=0.065 \\ r=0.065=6.5\text{ \%} \\ r=6.5\text{ \%} \\ \\ Substitute\text{ the value of r into equation 1, we have:} \\ 2100=P(1+r)^{10} \\ 2100=P(1+0.065)^{10} \\ P(1+0.065)=\sqrt[10]{2100}\Rightarrow P(1.065)=\sqrt[10]{2100}\Rightarrow P=\frac{\sqrt[10]{2100}}{1.065} \\ P=2.018 \end{gathered}[/tex]