Respuesta :

The given equation is

[tex]\log _3x+\log _3(2x+1)=1[/tex]

Use the rule

[tex]\log _ba+\log _bc=\log _bac[/tex]

[tex]\log _3x(2x+1)=1[/tex]

Change it to the exponent using the rule

[tex]\log _ba=n\rightarrow b^n=a[/tex]

[tex]\begin{gathered} x(2x+1)=3^1 \\ 2x^2+x=3 \end{gathered}[/tex]

Subtract 3 from both sides

[tex]\begin{gathered} 2x^2+x-3=3-3 \\ 2x^2+x-3=0 \end{gathered}[/tex]

Factorize it

[tex](2x+3)(x-1)=0[/tex]

Equate each bracket by 0 to find x

[tex]\begin{gathered} 2x+3=0 \\ 2x+3-3=0-3 \\ 2x=-3 \\ \frac{2x}{2}=\frac{-3}{2} \\ x=-1.5 \end{gathered}[/tex]

[tex]\begin{gathered} x-1=0 \\ x-1+1=0+1 \\ x=1 \end{gathered}[/tex]

We will refuse x = -1.5 because we can not use negative numbersThank

with log

The answer is x = 1 only

The answer is D

ACCESS MORE
EDU ACCESS
Universidad de Mexico