Question 32, it’s one am for me and I have exams tomorrow, please be quick and include answers in bold, thanks

The given equation is
[tex]\log _3x+\log _3(2x+1)=1[/tex]Use the rule
[tex]\log _ba+\log _bc=\log _bac[/tex][tex]\log _3x(2x+1)=1[/tex]Change it to the exponent using the rule
[tex]\log _ba=n\rightarrow b^n=a[/tex][tex]\begin{gathered} x(2x+1)=3^1 \\ 2x^2+x=3 \end{gathered}[/tex]Subtract 3 from both sides
[tex]\begin{gathered} 2x^2+x-3=3-3 \\ 2x^2+x-3=0 \end{gathered}[/tex]Factorize it
[tex](2x+3)(x-1)=0[/tex]Equate each bracket by 0 to find x
[tex]\begin{gathered} 2x+3=0 \\ 2x+3-3=0-3 \\ 2x=-3 \\ \frac{2x}{2}=\frac{-3}{2} \\ x=-1.5 \end{gathered}[/tex][tex]\begin{gathered} x-1=0 \\ x-1+1=0+1 \\ x=1 \end{gathered}[/tex]We will refuse x = -1.5 because we can not use negative numbersThank
with log
The answer is x = 1 only
The answer is D