Answer:
The amount of pint of the first drink type is;
[tex]9\text{ pints}[/tex]The amount of pint of the second drink type is;
[tex]21\text{ pints}[/tex]Explanation:
Let x represent the amount of pint of the first type
The amount of the second type will be;
[tex]30-x[/tex]Since the total amount of the mixture is 30 pint.
Equating the amount of pure fruit in each type to that of the mixture.
[tex]\begin{gathered} \text{first type = 35\% =0.35} \\ \text{second type = 85\% = 0.85} \\ \text{Mixture = 70\% = 0.70} \end{gathered}[/tex]We have;
[tex]0.35(x)+0.85(30-x)=0.70(30)[/tex]solving for x;
[tex]\begin{gathered} 0.35(x)+0.85(30)-0.85(x)=0.70(30) \\ 0.35x-0.85x+25.5=21 \\ -0.50x=21-25.5 \\ -0.50x=-4.5 \\ \frac{-0.50x}{-0.50}=\frac{-4.5}{-0.50} \\ x=9 \end{gathered}[/tex]The amount of pint of the first type is;
[tex]9\text{ pints}[/tex]So, the amount of pint of the second type will be;
[tex]\begin{gathered} 30-x=30-9 \\ =21 \end{gathered}[/tex]The amount of pint of the second type is;
[tex]21\text{ pints}[/tex]