Respuesta :

y=20-4x

Then the volume is

[tex]V=\mleft(3x\mright)\mleft(x\mright)\mleft(20-4x\mright)[/tex]

[tex]V=60x^2-12x^3[/tex]

The derivate of the V

[tex]\frac{dV}{dx}=120x-36x^2[/tex]

In order to find the value of x where V is a maximum, we need to find the value when the derivate is 0

[tex]x(120-36x)=0[/tex]

we have two options

x=0 and

120-36x=0

120=36x

36x=120

x=120/36

x=10/3

Then we evaluate these values into the Volume equation

First x=0

[tex]V(0)=60(0)-12(0)=0[/tex]

The x=10/3

[tex]V(\frac{10}{3})=60(\frac{10}{3})^2-12(\frac{10}{3})^3=\frac{2000}{9}=222.22[/tex]

the maximum Volumen is when x=10/3=3.33

RELAXING NOICE
Relax