Find de 60 X 2 X X=12 X 3 X x? 120x - 36x4 d. Find the value of x for which V is a maximum.

y=20-4x
Then the volume is
[tex]V=\mleft(3x\mright)\mleft(x\mright)\mleft(20-4x\mright)[/tex][tex]V=60x^2-12x^3[/tex]The derivate of the V
[tex]\frac{dV}{dx}=120x-36x^2[/tex]In order to find the value of x where V is a maximum, we need to find the value when the derivate is 0
[tex]x(120-36x)=0[/tex]we have two options
x=0 and
120-36x=0
120=36x
36x=120
x=120/36
x=10/3
Then we evaluate these values into the Volume equation
First x=0
[tex]V(0)=60(0)-12(0)=0[/tex]
The x=10/3
[tex]V(\frac{10}{3})=60(\frac{10}{3})^2-12(\frac{10}{3})^3=\frac{2000}{9}=222.22[/tex]the maximum Volumen is when x=10/3=3.33