Respuesta :

EXPLANATION

Dividing the numerator and denominator by the highest denominator power (x^2):

[tex]=\lim _{x\to\: -\infty\: }\mleft(\frac{\frac{1}{x}+\frac{1}{x^2}}{1-\frac{2}{x}}\mright)[/tex]

Applying the following property:

[tex]\lim _{x\to a}\mleft[\frac{f\left(x\right)}{g\left(x\right)}\mright]=\frac{\lim_{x\to a}f\left(x\right)}{\lim_{x\to a}g\left(x\right)},\: \quad \lim _{x\to a}g\mleft(x\mright)\ne0[/tex]

[tex]With\: the\: exception\: of\: indeterminate\: form[/tex]

[tex]=\frac{\lim_{x\to\:-\infty\:}\left(\frac{1}{x}+\frac{1}{x^2}\right)}{\lim_{x\to\:-\infty\:}\left(1-\frac{2}{x}\right)}[/tex]

[tex]=\frac{\lim_{x\to\: -\infty\: }(\frac{1}{x}+\frac{1}{x^2})}{\lim_{x\to\: -\infty\: }(1-\frac{2}{x})}=\frac{0}{1}=0[/tex]

Now, we need to apply the same steps to x-> ∞

[tex]\mathrm{Apply\: the\: following\: algebraic\: property}\colon\quad a+b=a\mleft(1+\frac{b}{a}\mright)[/tex]

[tex]\frac{x+1}{x^2-2x}=\frac{x\left(1+\frac{1}{x}\right)}{x^2\left(1-\frac{2}{x}\right)}[/tex]

[tex]=\lim _{x\to\infty\: }\mleft(\frac{x\left(1+\frac{1}{x}\right)}{x^2\left(1-\frac{2}{x}\right)}\mright)[/tex]

Simplifying:

[tex]=\lim _{x\to\infty\: }\mleft(\frac{1+\frac{1}{x}}{-2+x}\mright)[/tex]

[tex]\lim _{x\to a}\mleft[\frac{f\left(x\right)}{g\left(x\right)}\mright]=\frac{\lim_{x\to a}f\left(x\right)}{\lim_{x\to a}g\left(x\right)},\: \quad \lim _{x\to a}g\mleft(x\mright)\ne0[/tex]

[tex]\mathrm{With\: the\: exception\: of\: indeterminate\: form}[/tex]

[tex]=\frac{\lim_{x\to\infty\:}\left(1+\frac{1}{x}\right)}{\lim_{x\to\infty\:}\left(-2+x\right)}[/tex]

[tex]=\frac{1}{\infty\:}[/tex]

[tex]\mathrm{Apply\: Infinity\: Property\colon}\: \frac{c}{\infty}=0[/tex]

[tex]=0[/tex]

In conclusion, the appropiate end behavior is as follows:

[tex]\lim _{x\to-\infty}f(x)=0;\text{ }lim_{x\to\infty}f(x)=0[/tex]

ACCESS MORE
EDU ACCESS