Respuesta :

To solve this problem, we will use the dot product, recall that:

[tex]u\cdot v=\parallel u\parallel\parallel v\parallel\cos \theta.[/tex]

Where u and v are two vectors.

From the above definition, we get that:

[tex]\theta=\cos ^{-1}(\frac{u\cdot v}{\parallel u\parallel\parallel v\parallel}).[/tex]

Substituting the given vectors in the formula, we get:

[tex]\theta=\cos ^{-1}(\frac{(5i-j)\cdot(3i+5j)}{\parallel5i-j\parallel\parallel3i+5j\parallel}).[/tex]

Now, recall that:

[tex]\begin{gathered} (ai+bj)\cdot(ci+dj)=(a\cdot b)+(c\cdot d)\text{.} \\ \parallel ai+bj\parallel=a^2+b^2. \end{gathered}[/tex]

Therefore:

[tex]\theta=\cos ^{-1}(\frac{15-5}{\sqrt{26}+\sqrt{34}})=\cos ^{-1}(\frac{10}{\sqrt[]{26}+\sqrt[]{34}})\text{.}[/tex]

Simplifying we get:

[tex]\theta\approx70.3^{\circ}.[/tex]

Answer:

[tex]\theta=70.3^{\circ}\text{.}[/tex]

RELAXING NOICE
Relax