Given v = 5i - j and w = 3i+5j, find the angle between v and w

To solve this problem, we will use the dot product, recall that:
[tex]u\cdot v=\parallel u\parallel\parallel v\parallel\cos \theta.[/tex]Where u and v are two vectors.
From the above definition, we get that:
[tex]\theta=\cos ^{-1}(\frac{u\cdot v}{\parallel u\parallel\parallel v\parallel}).[/tex]Substituting the given vectors in the formula, we get:
[tex]\theta=\cos ^{-1}(\frac{(5i-j)\cdot(3i+5j)}{\parallel5i-j\parallel\parallel3i+5j\parallel}).[/tex]Now, recall that:
[tex]\begin{gathered} (ai+bj)\cdot(ci+dj)=(a\cdot b)+(c\cdot d)\text{.} \\ \parallel ai+bj\parallel=a^2+b^2. \end{gathered}[/tex]Therefore:
[tex]\theta=\cos ^{-1}(\frac{15-5}{\sqrt{26}+\sqrt{34}})=\cos ^{-1}(\frac{10}{\sqrt[]{26}+\sqrt[]{34}})\text{.}[/tex]Simplifying we get:
[tex]\theta\approx70.3^{\circ}.[/tex]Answer:
[tex]\theta=70.3^{\circ}\text{.}[/tex]