Let's use the following formula:
[tex]v=\frac{d}{t}[/tex]We have two speeds in this case, the speed of the boat and the speed of the water, so:
[tex]\begin{gathered} v_b=Speed_{\text{ }}of_{\text{ }}the_{\text{ }}bo_{}at \\ v_w=Speed_{\text{ }}of_{\text{ }}the_{\text{ }}water \end{gathered}[/tex]When the boat travels 33 miles downstream in 4 hours, we can say that their speeds add up:
[tex]v_b+v_w=\frac{33}{4}[/tex]When the boat return, we can say that their speeds are subtracted:
[tex]v_b-v_w=\frac{33}{4}[/tex]with this we can form a system of equations 2x2:
[tex]\begin{gathered} v_b+v_w=\frac{33}{4}_{\text{ }}(1)_{} \\ v_b-v_w=\frac{33}{4}_{\text{ }}(2) \end{gathered}[/tex]Let's solve for vb:
[tex]\begin{gathered} (1)+(2) \\ v_b+v_b+v_w-v_w=\frac{33}{4}+\frac{33}{4} \\ 2v_b=\frac{66}{4} \\ 2v_b=\frac{33}{2} \\ v_b=\frac{33}{4}=\frac{8.25mi}{h} \end{gathered}[/tex]