Given the Quadratic Equation:
[tex]-2x^2-12x-9=0[/tex]You need to follow these steps in order to complete the square:
1. You can identify that the equation has this form:
[tex]ax^2+bx+c=0[/tex]And, in this case:
[tex]a=-2[/tex]Since you need that:
[tex]a=1[/tex]You need to divide both sides of the equation by -2:
[tex]\begin{gathered} -\frac{2x^2}{(-2)}-\frac{12x}{(-2)}-\frac{9}{(-2)}=\frac{0}{(-2)} \\ \\ x^2+6x+\frac{9}{2}=0 \end{gathered}[/tex]2. Subtract the Constant Term from both sides of the equation:
[tex]\begin{gathered} x^2+6x+\frac{9}{2}-(\frac{9}{2})=0-(\frac{9}{2}) \\ \\ x^2+6x=-\frac{9}{2} \end{gathered}[/tex]3. Notice that:
[tex]b=6[/tex]You need to add the following value to both sides of the equation:
[tex](\frac{b}{2})^2=(\frac{6}{2})^2=3^2[/tex]Then:
[tex]\begin{gathered} x^2+6x+3^2=-\frac{9}{2}+3^2 \\ \\ x^2+6x+3^2=-\frac{9}{2}+9 \\ \\ x^2+6x+3^2=\frac{9}{2} \end{gathered}[/tex]4. Rewrite the Perfect Square on the left side of the equation:
[tex](x+3)^2=\frac{9}{2}[/tex]Hence, the answer is:
[tex](x+3)^2=\frac{9}{2}[/tex]