We have the coordinates of point A (5, -6) and point B has coordinates (7, 2).
Part A.
To find the coordinates of the midpoints
We will use the relationship
[tex]\frac{x_1+x_2}{2},\frac{y_1+y_2}{2}[/tex]so that our midpoint will be
[tex]\begin{gathered} \frac{5+7}{2},\frac{-6+2}{2} \\ \frac{12}{2},\frac{-4}{2} \\ \Rightarrow(6,-2) \end{gathered}[/tex]Part B
To find the gradient
[tex]\frac{y_2-y_1}{x_2-x_1}=\frac{2-(-6)}{7-5}=\frac{8}{2}=4[/tex]Gradient = 4.
Part C
The equation of the straight line AB, can be obtained as follow
[tex]\begin{gathered} \frac{y-y_1}{x-x_1}=m \\ \frac{y-(-6)}{x-5}=4 \\ \\ \frac{y+6}{x-5}=4 \end{gathered}[/tex]Cross multiply
[tex]\begin{gathered} y+6=4(x-5) \\ y+6=4x-20 \\ y=4x-20-6 \\ y=4x-26 \end{gathered}[/tex]The equation of the straight line is: y= 4x -26
Part D
To get the equation of the perpendicular bisector, we will find the slope that is perpendicular to the line AB
since the slope of AB is 4
[tex]\begin{gathered} \text{the slope perpendicular to the line will be} \\ m=-\frac{1}{4} \end{gathered}[/tex]The midpoint is (6, -2)
Then the equation of the perpendicular bisector can be obtained as follow
[tex]\begin{gathered} \frac{y-(-2)}{x-6}=-\frac{1}{4} \\ \\ \frac{y+2}{x-6}=-\frac{1}{4} \end{gathered}[/tex]Cross multiply
[tex]\begin{gathered} 4y+8=-x+6 \\ 4y+x+8-6=0 \\ 4y+x+2=0 \\ x+4y+2=0 \end{gathered}[/tex]The equation of the perpendicular bisector is
x+4y+2=0