Given:
[tex]y=3x^2+30x+71[/tex]To find:
Rewrite the equation using the completing the square method.
Explanation:
It can be written as,
[tex]\begin{gathered} y=3(x^2+10x)+71 \\ =3(x^2+10x+5^2-5^2)+71 \\ y=3[(x^2+10x+5^2)-25]+71 \end{gathered}[/tex]Using the algebraic identity,
[tex]a^2+2ab+b^2=(a+b)^2[/tex]We can write,
[tex]\begin{gathered} y=3[(x+5)^2-25]+71 \\ y=3(x+5)^2-75+71 \\ y=3(x+5)^2-4 \end{gathered}[/tex]Therefore, the equation becomes,
[tex]y=3\left(x+5\right)^{2}-4[/tex]It is of the form,
[tex]y=a\left(x-h\right)^2+k,(h,k)\text{ is the extreme value of the function}[/tex]So, the extreme value of the equation is at
[tex](-5,-4)[/tex]Final answer:
The equation is written as,
[tex]y=3\left(x+5\right)^{2}-4[/tex]The extreme value of the equation is at
[tex](-5,-4)[/tex]