Respuesta :

Given: -9i zero and

[tex]f(x)=x^4+11x^3+99x^2+891x+1458[/tex]

Find: root of the given eqaution.

Explanation: if -9i is thr one root of the equation then 9i wll be the another root of the equation.

-9i (x+9i)

9i (x-9i)

that means (x+9i)(x-9i) will be divide by the given equation.

[tex](x+9i)(x-9i)=(x^2+81)[/tex]

when we divide it to the given equation we get,

[tex]x^2+11x+18[/tex]

on solving it

[tex]\begin{gathered} x^4+11x^3+99x^2+891x+1458=(x+9i)(x-9i)(x^2+11x+18) \\ =(x+9i)(x-9i)(x+2)(x+9) \end{gathered}[/tex]

Hence,the other roots of the given eqaution is -2 and -9.

Final answer: the required roots of the equation is 9i,-9i,-2,-9.

ACCESS MORE
EDU ACCESS
Universidad de Mexico