The form of the quadratic equation is
[tex]y=ax^2+bx+c[/tex]To find a, b, and c, we will any three points from the table and substitute x and y by them to make 3 equations and solve them
[tex]\because x=0.8,y=195[/tex]Substitute x by 0.8 and y by 195
[tex]\begin{gathered} 195=a(0.8)^2+b(0.8)+c \\ 195=0.64a+0.8b+c \\ 0.64a+0.8b+c=195\Rightarrow(1) \end{gathered}[/tex][tex]\because x=1.9,y=429[/tex][tex]\begin{gathered} 429=a(1.9)^2+b(1.9)+c \\ 429=3.61a+1.9b+c \\ 3.61a+1.9b+c=429\Rightarrow(2) \end{gathered}[/tex][tex]\because x=2.7,y=569[/tex][tex]\begin{gathered} 569=a(2.7)^2+b(2.7)+c \\ 569=7.29a+2.7b+c \\ 7.29a+2.7b+c=569\Rightarrow(3) \end{gathered}[/tex]Now, we will use the calculator to solve this system of equations to find a, b, and c
a = -19.86
b = 266.34
c = -5.36
Substitute them in the form of the equation above
[tex]y=-19.86x^2+266.34x-5.36[/tex]