Answer:
intial velocity: 6.02 m /s
Explanation:
To find the initial velocity, we make use of the following kinematic equations
[tex]\begin{gathered} y=y_0+(v_0\sin \theta)t-\frac{1}{2}gt^2 \\ x=(v_0\cos \theta)t \end{gathered}[/tex]Now we know that t = 1.20 s, g = 9.8 m /s, y0 = 1.0 m, and at the ground y =0; therefore, the above equations give
[tex]\begin{gathered} 0=1+(v_0\sin \theta)(1.20)-\frac{1}{2}(9.8)(1.20)^2 \\ 1.02=(v_0\cos \theta)(1.20) \end{gathered}[/tex]solving these equations for v0 sin θ and v0 cos θ gives
[tex]\frac{\frac{1}{2}(9.8)(1.20)^2-1}{\mleft(1.20\mright)}=(v_0\sin \theta)[/tex][tex]\Rightarrow v_0\sin \theta=5.05[/tex]and
[tex]\frac{1.02}{\mleft(1.20\mright)}=(v_0\cos \theta)[/tex][tex]v_0\cos \theta=0.85[/tex]Now dividing the two equations gives
[tex]\frac{v_0\sin \theta}{v_0\cos \theta}=\frac{5.05}{0.85}[/tex][tex]\tan \theta=5.94[/tex]taking the inverse tan gives
[tex]\theta=80.45^o[/tex]Now that we know theta, it is easy to find v0.
[tex]v_0\sin (80.45)=5.94[/tex][tex]v_0=\frac{5.94}{\sin (80.45)}[/tex][tex]\boxed{v_0=6.02}[/tex]which is our answer!