Using the function f(x)=1/4x^2and the values x = {-4-2, 0, 2, }, complete the table below

You have to determine the ordered pairs for given values of x of the function:
[tex]f(x)=\frac{1}{4}(x)^2[/tex]To do so, replace the function with each value of x and calculate the corresponding value of f(x):
1) For x=-4
-Replace the value in the formula
[tex]\begin{gathered} f(x)=\frac{1}{4}(x)^2 \\ f(-4)=\frac{1}{4}(-4)^2 \end{gathered}[/tex]-First solve the exponent
[tex]f(-4)=\frac{1}{4}\cdot16[/tex]-Then solve the multiplication
[tex]f(-4)=4[/tex]The first ordered pair is (-4,4)
2) For x=-2
-Replace the value in the formula
[tex]\begin{gathered} f(x)=\frac{1}{4}(x)^2 \\ f(-2)=\frac{1}{4}(-2)^2 \end{gathered}[/tex]-First solve the exponent
[tex]f(-2)=\frac{1}{4}\cdot4[/tex]-Then solve the multiplication
[tex]f(-2)=1[/tex]The second ordered pair is (-2,1)
3) For x=0
-Replace the value in the formula
[tex]\begin{gathered} f(x)=\frac{1}{4}(x)^2 \\ f(0)=\frac{1}{4}(0)^2 \end{gathered}[/tex]-First solve the exponent
[tex]f(0)=\frac{1}{4}\cdot0[/tex]-Then solve the multiplication
[tex]f(0)=0[/tex]The third ordered pair is (0,0)
4) Fox x=2
-Replace the value in the formula
[tex]\begin{gathered} f(x)=\frac{1}{4}(x)^2 \\ f(2)=\frac{1}{4}(2)^2 \end{gathered}[/tex]-First solve the exponent
[tex]f(2)=\frac{1}{4}\cdot4[/tex]-Then solve the multiplication
[tex]f(2)=1[/tex]The fourth ordered pair is (2,1)
5) For x=4
-Replace the value in the formula
[tex]\begin{gathered} f(x)=\frac{1}{4}(x)^2 \\ f(4)=\frac{1}{4}(4)^2 \\ \end{gathered}[/tex]-First solve the exponent
[tex]f(4)=\frac{1}{4}\cdot16[/tex]-Then solve the multiplication
[tex]f(4)=4[/tex]The fifth ordered pair is (4,4)