We are given the following system of equations:
[tex]\begin{gathered} y=x+6,(1) \\ y=\frac{3}{2}x+4,(2) \end{gathered}[/tex]To determine the solution we will subtract equation (2) from equation (1):
[tex]y-y=x+6-(\frac{3}{2}x+4)[/tex]Now we solve the parenthesis using the distributive law:
[tex]y-y=x+6-\frac{3}{2}x-4[/tex]Now we add like terms;
[tex]0=-\frac{x}{2}+2[/tex]Now we add x/2 to both sides:
[tex]\begin{gathered} \frac{x}{2}=-\frac{x}{2}+\frac{x}{2}+2 \\ \frac{x}{2}=2 \end{gathered}[/tex]Now we multiply both sides by 2:
[tex]\begin{gathered} \frac{2x}{2}=4 \\ x=4 \end{gathered}[/tex]Therefore, x = 4
Now we replace the value of "x" is equation (1):
[tex]\begin{gathered} y=x+6 \\ y=4+6 \\ y=10 \end{gathered}[/tex]Therefore, the solution is:
[tex](x,y)=(4,10)[/tex]