Respuesta :

ANSWER

[tex]1.\text{ }3x(x^2+3)[/tex][tex]2.\text{ }3x^2(27x^4-12x^2+30)[/tex]

EXPLANATION

Given:

[tex]\begin{gathered} Part\text{ 1. }3x^3+9x \\ Part\text{ 2. }81x^6-36x^4+90x^2 \end{gathered}[/tex]

Determine the GCF of all the expression's terms

3: 1, 3

9: 1, 3, 9

36: 1, 2, 3, 4, 6, 9, 12, 18, 36

81: 1, 3, 9, 27, 81

90: 1, 3, 9, 10

Part 1:

The GCF = 3x

Then, to the left of a set of parenthesis, write the GCF: 3x( )

After that, divide each term in the original equation by the GCF (3x) and put it in parenthesis.

That is:

[tex]\begin{gathered} \frac{3x^3}{3x}=x^2 \\ \frac{9x}{3x\text{ }}=3 \end{gathered}[/tex]

So you have:

[tex]3x(x^2+3)[/tex]

Part 2:

The GCF = 3x^2

[tex]\begin{gathered} \frac{81x^6}{3x^2}=27x^4 \\ \frac{36x^4}{3x^2}=12x^2 \\ \frac{90x^2}{3x^2}=30 \end{gathered}[/tex]

Hence, you have:

[tex]3x^2(27x^4-12x^2+30)[/tex]

RELAXING NOICE
Relax