Let's say that the price of one tablecloth is "x" and the price of one centerpiece is "y", we know that
[tex]3x+15y=30[/tex]Also
[tex]2x+4y=11[/tex]Then we must solve a system of equations
[tex]\begin{cases}3x+15y=30{} \\ 2x+4y={11}\end{cases}[/tex]We have multiple ways to solve that system of equations, we just want to find the value of "x", then, let's do a substituition method to solve it for x.
[tex]y=\frac{30-3x}{15}[/tex]Then
[tex]\begin{gathered} 2x+4y=11 \\ \\ 2x+4\cdot\frac{30-3x}{15}=11 \\ \\ 2x+\frac{120-12x}{15}=11 \\ \\ 2x+\frac{120}{15}-\frac{12x}{15}=11 \\ \\ 2x-\frac{12x}{15}=11-\frac{120}{15} \\ \\ \frac{30x}{15}-\frac{12x}{15}=\frac{165}{15}-\frac{120}{15} \\ \\ 30x-12x=165-120 \\ \\ 18x=45 \\ \\ x=\frac{45}{18}=2.5 \end{gathered}[/tex]The price of one tablecloth is $2.5