what's the measure for the top left angle and the top right angle of the triangle

We know 3 angles in a triangle sum to 180.
Thus, we can write:
[tex]90+7x+6+6x-7=180[/tex]Note: This is a right triangle and the bottom angle is 90 degrees.
Now, we solve for x:
[tex]\begin{gathered} 90+7x+6+6x-7=180 \\ 13x+89=180 \\ 13x=180-89 \\ 13x=91 \\ x=\frac{91}{13} \\ x=7 \end{gathered}[/tex]Measure of Top Left Angle:
[tex]\begin{gathered} 7x+6 \\ =7(7)+6 \\ =49+6 \\ =55\degree \end{gathered}[/tex]Measure of Top Right Angle:
[tex]\begin{gathered} 6x-7 \\ =6(7)-7 \\ =42-7 \\ =35\degree \end{gathered}[/tex]