Respuesta :
Given:
the mass of the ice is
[tex]\begin{gathered} m_1=25\text{ g} \\ m_1=0.025\text{ kg} \end{gathered}[/tex]the temperature of the ice is
[tex]T_1=-73\text{ C}[/tex]The specific heat of the ice is
[tex]k_1=2090\text{ K/kg C}[/tex]latent heat of the ice is
[tex]L=3.33\times10^5\text{ J/kg}[/tex]The mass of the water is
[tex]\begin{gathered} m_2=517\text{ g} \\ m_2=0.517\text{ kg} \end{gathered}[/tex]The temperature of the water is
[tex]T_2=22\text{ C}[/tex]Specific heat of the water is
[tex]k_2=4186\text{ J/kg C}[/tex]The mass of the copper is
[tex]\begin{gathered} m_3=74\text{ g} \\ m_3=0.074\text{ kg} \end{gathered}[/tex]The temperature of the copper is
[tex]T_3=22\text{ C}[/tex]and specific heat of the copper is
[tex]k_3=387\text{ J/kg C}[/tex]Required: the final temperature
Explanation:
to solve this problem we will use the concept of calorimetry
that is given as
[tex]\Delta Q=0.....(1)[/tex]froheat required to melt the ice form -73 to 0 is given by
[tex]Q_1=m_1k_1(0-T_1)+m_1L[/tex]plugging all the values in the above relation we get
[tex]\begin{gathered} Q_1=0.025\text{ kg}\times2090\text{ J/kg C}\times(0-(-73)+0.025\text{ kg }\times3.33\times10^5\text{ J/kg} \\ Q_1=12139.25\text{ J} \end{gathered}[/tex]now calculate for whole system
heat required to increase the temperature of melted ice is
[tex]Q_2=m_1k_2(T-0)[/tex]heat required water to increase its temperature
[tex]Q_3=m_2k_2(T-T_2)[/tex]heat required to increase the temperature of the copper is
[tex]Q_4=m_3k_3(T-T_3)[/tex]now from the equation (1)
[tex]\begin{gathered} Q_1+Q_2+Q_3+Q_3=0 \\ 12139.25\text{ J +0.025}\times4186(T-0)+0.517\text{ kg}\times4186\text{ J/kg}(T-22)+0.074\text{ kg}\times387\text{ J/kg C }((T-22)=0 \\ T=\frac{36102}{2297.29} \\ T=15.72\text{ C} \end{gathered}[/tex]Thus, the final temperature of the system is
[tex]15.72\text{ C}[/tex]