Respuesta :
Given:
Mass, m = 3.00 kg
Inital velocity, Vy = 15.0 m/s northward
Force, Fx = 15.0 N towards east
time, t = 3.40 s
Let's solve for the following:
• (A). At the end of the 3.40 s, what is magnitude of the object’s final velocity?
First find the acceleration towards east using the formula:
[tex]\begin{gathered} a_x=\frac{F_x}{m} \\ \\ a_x=\frac{15.0}{3.00} \\ \\ a_x=5m/s^2 \end{gathered}[/tex]Where:
Initial velocity towrads east = Vox = 0 m/s
Hence, to find the final velocity towards east after the 3.40 seconds, we have:
[tex]\begin{gathered} v_x=v_{ox}+at \\ \\ v_x=0+5(3.40) \\ \\ v_x=17\text{ m/s} \end{gathered}[/tex]Now, to find the magnitude of the object's final velocity, apply the formula:
[tex]v=\sqrt[]{v^2_x+v^2_y}_{}_{}[/tex]Where:
Vx = 17 m/s
Vy = 15.0 m/s
We have:
[tex]\begin{gathered} v=\sqrt[]{(17)^2+(15)^2} \\ \\ v=\sqrt[]{289+225} \\ \\ v=\sqrt[]{514} \\ \\ v=22.7\text{ m/s} \end{gathered}[/tex]Therefore, the magnitude of the object's final velocity is 22.7 m/s.
• (B). What is the direction of the final velocity?
To find the direction of the final velocity, apply the formula:
[tex]\tan \theta=\frac{v_y}{v_x}[/tex]Thus, we have:
[tex]\begin{gathered} \tan \theta=\frac{15}{17} \\ \\ \theta=\tan ^{-1}(\frac{15}{17}) \\ \\ \theta=+41.4^0 \end{gathered}[/tex]Thererfore, the direction of the fianl velocity is 41.4 degrees North of East.
• (C). What is the change in momentum during the 3.40s?
The change in momenutum in the y-component is = 0
Apply the formula to find the change in x-component:
[tex]\Delta p_x=m\Delta v_x[/tex]Thus, we have:
[tex]\begin{gathered} \Delta p_x=(3.00)(17) \\ \\ \Delta p_x=51\text{ kg m/s} \end{gathered}[/tex]Therefore, the change in momentum is 51 kg m/s towards east.
ANSWER:
• (a). 22.7 m/s
,• (b). +41.4 degrees
,• (c). +51 kg. m/s