ANSWER
The new pressure of the gas is 1.3atm
EXPLANATION
Given that;
The initial temperature of the gas is 20 degrees celcius
The final temperature of the gas is 35 degrees celcius
The initial pressure of the gas is 1.2 atm
Follow the steps below to find the final pressure of the gas
Step 1; Convert the temperature to degrees Kelvin using the below conversion formula
[tex]\text{ T K = t}\degree C\text{ + 273.15}[/tex][tex]\begin{gathered} \text{ For T1 = 20}\degree C \\ \text{ T = 20 + 273.15} \\ \text{ T = 293.15K} \\ \\ \text{ For T}_2\text{ = 35}\degree C \\ \text{ T}_2\text{ = 35 + 273.15} \\ \text{ T}_2\text{ = 308.15K} \end{gathered}[/tex]Step 2; Apply the Gay Lussac's law
[tex]\text{ }\frac{\text{ P}_1}{\text{ T}_1}\text{ = }\frac{\text{ P}_2}{\text{ T}_2}[/tex]Substitute the given data into the above formula
[tex]\begin{gathered} \text{ }\frac{\text{ 1.2}}{\text{ 293.15}}\text{ = }\frac{\text{ P}_2}{\text{ 308.15}} \\ \text{ cross multiply} \\ \text{ 1.2 }\times\text{ 308.15 = P}_2\text{ }\times\text{ 293.15} \\ \text{ 369.78 = 293.15 P}_2 \\ \text{ Divide both sides by 293.15} \\ \text{ P}_2\text{ = }\frac{\text{ 369.78}}{\text{ 293.15}} \\ \text{ P}_2\text{ = 1.26 atm} \\ P_2\approx\text{ 1.3 atm} \end{gathered}[/tex]Therefore, the new pressure of the gas is 1.3 atm