Explanation:
Part A:
To figure out the amount of fencing needed to enclose the plot, we will use the formula of the perimeter of a rectangl below
[tex]\begin{gathered} P=2(l+w) \\ where, \\ l=160ft \\ w=50ft \end{gathered}[/tex]By substituting the values, we will have
[tex]\begin{gathered} P=2(l+w) \\ P=2(160ft+50ft) \\ P=2(210ft) \\ P=420ft \end{gathered}[/tex]Hence,
The amount of fencing needed to enclose this plot will be
[tex]420ft[/tex]Part A:
The total area nclose by the fencing
This will be calculated using the formula for th area of a rectangle given below as
[tex]\begin{gathered} A=l\times w \\ \end{gathered}[/tex]By substituting values, we will have
[tex]\begin{gathered} A=l\times w \\ A=160ft\times50ft \\ A=8000ft^2 \end{gathered}[/tex]Hence,
The total area enclosed by this fencing is
[tex]8000ft^2[/tex]