Please no dumb answers. I really do need help. And correct answers.
f(x)=-32(2)^(x-3)+3 find the y-intercept?

What is the exponential form of the logarithmic equation?
4=log0.80.4096

What is the value of the logarithm?
log(750)

Round the answer to the nearest thousandth.
Solve the logarithmic equation.
y=log40.25

Respuesta :

y intercept is where x=0

so
-32(2^-3)+3
-32(1/(2^3))+3
-32(1/8)+3
-4+3
-1
yint is (0,-1)



log thing

assuming you meant [tex]4=log_{0.80}(0.4096)[/tex] (because I can't read what that is supposed to be )
remember that [tex]a=log_b(c)[/tex] tarnalsates to [tex]b^a=c[/tex] so den
[tex]4=log_{0.80}(0.4096)[/tex] means [tex]4^{0.4096}=0.80[/tex]





log(750)
when no base is mentinoed, assume base of 10
I would just use my calculator tho
[tex]log_{10}(750)=?[/tex]
translate
[tex]10^?=750 [/tex]
I do know that 2<?<3 tho, that's all I know
if we did use a calculator then the aproxamate value is 2.875






y=log40.25
10^y=40.25
know taht 1<y<2
dunno what else
sorry
if we use calcualtor it's about 1.604

Answer:

1. y-intercept is -1.

2. Exponential form is [tex]0.80^{4}=0.4096[/tex].

3. 2.875

4. y = 0.873

Step-by-step explanation:

1. We have the function [tex]f(x) = -32 \times 2^{x-3} +3[/tex].

Now as we know that y-intercept is the point where the line cuts y-axis i.e. x=0.

So, x=0 in the [tex]f(x) = -32 \times 2^{x-3} +3[/tex] gives,

[tex]f(x) = -32 \times 2^{0-3} +3[/tex]

i.e. [tex]f(x) = \frac{-32}{2^{3}}+3[/tex]

i.e. [tex]f(x) = \frac{-32}{8}+3[/tex]

i.e. [tex]f(x) = -4+3[/tex]

i.e. [tex]f(x) = -1[/tex]

So, the y-intercept of this function is -1.

2. We have, [tex]4=\log_{0.80}{0.4096}[/tex]

As, [tex]a=\log_{b}c[/tex] implies [tex]b^{a}=c[/tex].

Therefore, [tex]4=\log_{0.80}0.4096[/tex] implies [tex]0.80^{4}=0.4096[/tex].

Hence, the exponential form is [tex]0.80^{4}=0.4096[/tex].

3. We have to find the value of log(750).

As no base is given, we assume the base to be 10.

So, [tex]\log_{10}750[/tex] = 2.875.

4. We have, [tex]y=\log_{40}{25}[/tex]

Again using, As, [tex]a=\log_{b}c[/tex] implies [tex]b^{a}=c[/tex].

We have, As, [tex]y=\log_{40}25[/tex] implies [tex]40^{y}=25[/tex]

i.e. [tex]y \times \log40 = \log25[/tex]

i.e. y =  0.87258905175

Rounding to nearest thousand gives y = 0.873.

ACCESS MORE