Respuesta :
y intercept is where x=0
so
-32(2^-3)+3
-32(1/(2^3))+3
-32(1/8)+3
-4+3
-1
yint is (0,-1)
log thing
assuming you meant [tex]4=log_{0.80}(0.4096)[/tex] (because I can't read what that is supposed to be )
remember that [tex]a=log_b(c)[/tex] tarnalsates to [tex]b^a=c[/tex] so den
[tex]4=log_{0.80}(0.4096)[/tex] means [tex]4^{0.4096}=0.80[/tex]
log(750)
when no base is mentinoed, assume base of 10
I would just use my calculator tho
[tex]log_{10}(750)=?[/tex]
translate
[tex]10^?=750 [/tex]
I do know that 2<?<3 tho, that's all I know
if we did use a calculator then the aproxamate value is 2.875
y=log40.25
10^y=40.25
know taht 1<y<2
dunno what else
sorry
if we use calcualtor it's about 1.604
so
-32(2^-3)+3
-32(1/(2^3))+3
-32(1/8)+3
-4+3
-1
yint is (0,-1)
log thing
assuming you meant [tex]4=log_{0.80}(0.4096)[/tex] (because I can't read what that is supposed to be )
remember that [tex]a=log_b(c)[/tex] tarnalsates to [tex]b^a=c[/tex] so den
[tex]4=log_{0.80}(0.4096)[/tex] means [tex]4^{0.4096}=0.80[/tex]
log(750)
when no base is mentinoed, assume base of 10
I would just use my calculator tho
[tex]log_{10}(750)=?[/tex]
translate
[tex]10^?=750 [/tex]
I do know that 2<?<3 tho, that's all I know
if we did use a calculator then the aproxamate value is 2.875
y=log40.25
10^y=40.25
know taht 1<y<2
dunno what else
sorry
if we use calcualtor it's about 1.604
Answer:
1. y-intercept is -1.
2. Exponential form is [tex]0.80^{4}=0.4096[/tex].
3. 2.875
4. y = 0.873
Step-by-step explanation:
1. We have the function [tex]f(x) = -32 \times 2^{x-3} +3[/tex].
Now as we know that y-intercept is the point where the line cuts y-axis i.e. x=0.
So, x=0 in the [tex]f(x) = -32 \times 2^{x-3} +3[/tex] gives,
[tex]f(x) = -32 \times 2^{0-3} +3[/tex]
i.e. [tex]f(x) = \frac{-32}{2^{3}}+3[/tex]
i.e. [tex]f(x) = \frac{-32}{8}+3[/tex]
i.e. [tex]f(x) = -4+3[/tex]
i.e. [tex]f(x) = -1[/tex]
So, the y-intercept of this function is -1.
2. We have, [tex]4=\log_{0.80}{0.4096}[/tex]
As, [tex]a=\log_{b}c[/tex] implies [tex]b^{a}=c[/tex].
Therefore, [tex]4=\log_{0.80}0.4096[/tex] implies [tex]0.80^{4}=0.4096[/tex].
Hence, the exponential form is [tex]0.80^{4}=0.4096[/tex].
3. We have to find the value of log(750).
As no base is given, we assume the base to be 10.
So, [tex]\log_{10}750[/tex] = 2.875.
4. We have, [tex]y=\log_{40}{25}[/tex]
Again using, As, [tex]a=\log_{b}c[/tex] implies [tex]b^{a}=c[/tex].
We have, As, [tex]y=\log_{40}25[/tex] implies [tex]40^{y}=25[/tex]
i.e. [tex]y \times \log40 = \log25[/tex]
i.e. y = 0.87258905175
Rounding to nearest thousand gives y = 0.873.