Using the quadratic formula, let's determine the solution of the following equation:
[tex]\text{ 4x}^2\text{ + 3x + 2 = 0}[/tex]We get,
a = 4, b = 3 and c = 2
[tex]\text{ x = }\frac{\text{ -b }\pm\text{ }\sqrt{\text{b}^2\text{ - 4ac}}}{\text{2a}}[/tex][tex]\text{ x = }\frac{-(3)\text{ }\pm\text{ }\sqrt{(3)^2\text{ - 4\lparen4\rparen\lparen2\rparen}}}{2(4)}\text{ = }\frac{-3\text{ }\pm\text{ }\sqrt{9\text{ - 32}}}{8}[/tex][tex]\text{ x = }\frac{-3\text{ }\pm\text{ }\sqrt{-23}}{8}[/tex][tex]\text{ x}_1=\text{ }\frac{-3\text{ + }\sqrt{-23}}{8}\text{ = }\frac{-3\text{ + i}\sqrt{23}}{8}\text{ \lparen imaginary\rparen}[/tex][tex]\text{ x}_2\text{ = }\frac{-3\text{ - }\sqrt{-23}}{8}\text{ = }\frac{-3\text{ - i}\sqrt{23}}{8}\text{ \lparen imaginary\rparen}[/tex]Therefore, the equation has 2 imaginary roots and no real number solutions.
The answer is 0.