Respuesta :

[tex]\begin{gathered} \text{Given} \\ a_1=3,r=2 \end{gathered}[/tex]

Multiply the first term to the common ratio, and then do the same for each successive terms. We therefore have the following.

[tex]\begin{gathered} a_2=a_1\cdot r \\ a_2=3\cdot2 \\ a_2=6 \\ \\ a_3=a_2\cdot r \\ a_3=6\cdot2 \\ a_3=12 \\ \\ a_4=a_3\cdot r \\ a_4=12\cdot2 \\ a_4=24 \\ \\ a_5=a_4\cdot r \\ a_5=24\cdot2 \\ a_5=48 \end{gathered}[/tex]

The first five terms of the given geometric sequence is 3,6,12,24,48.

RELAXING NOICE
Relax