The rate of speed of the motor boat is 20 mph
Explanation:The distance of the motor boat = 42 miles
The distance of the jet ski = 76 miles
let the speed of the motor boat = s
the speed of the jet ski = 20mph faster than the motor boat
the speed of the jet ski = 20 + s
Total time spent = 4 hours
To get the speed of the motor boat, we will apply the formula:
[tex]\begin{gathered} speed\text{ = }\frac{distance}{time} \\ time\text{ = }\frac{distance}{speed} \end{gathered}[/tex]Time for motor boat:
time = 42/s
Time for the jet ski:
time = 76/(20 + s)
Total time = time for the motor boat + time for the jet ski
[tex]\begin{gathered} Total\text{ }time\text{ = }\frac{42}{s}\text{ + }\frac{76}{20\text{ + s}} \\ 4=\frac{42}{s}\text{ + }\frac{76}{20\text{ + s}} \\ \\ 4\text{ = }\frac{42(20\text{ + s\rparen + 76\lparen s\rparen}}{s(20\text{ + s\rparen}} \\ 4\text{ = }\frac{840\text{ + 42s + 76s}}{20s\text{ + s}^2} \\ 4(20s\text{ + s}^2)\text{ = 840 + 42s + 76s} \\ 80s\text{ + 4s}^2\text{ = 840 + 118s} \end{gathered}[/tex][tex]\begin{gathered} 4s^2\text{ + 80s - 118s - 840 = 0} \\ 4s^2\text{ - 38s - 840 = 0} \\ \\ divide\text{ both sides by 2:} \\ 2s^2\text{ - 19s - 420 = 0} \end{gathered}[/tex][tex]\begin{gathered} factorize\text{ 2s}^2\text{ - 19s - 420 = 0} \\ 2s^2\text{ - 40s + 21s - 420 = 0} \\ 2s(s\text{ - 20\rparen + 21\lparen s - 20\rparen = 0 } \\ (2s\text{ + 21\rparen\lparen s - 20\rparen = 0} \\ 2s\text{ + 21 = 0 or s - 20 = 0} \\ 2s\text{ = -21 or s = 20} \\ s\text{ = -21/2 or s = 20} \\ s\text{ = -10.5 or s = 20} \end{gathered}[/tex]Since we can't have a negative number as speed, the speed will be 20 mph
The rate of speed of the motor boat is 20 mph