Respuesta :

According to the given image, the function consists of multiplying the input value by 3, then we sum 3 to get the output value. So, the equation for this function would be

[tex]y=5x+3[/tex]

Now, we solve the equation for x, first, we subtract 3 on each side.

[tex]\begin{gathered} y-3=5x+3-3 \\ y-3=5x \end{gathered}[/tex]

Then, we divide the equation by 5.

[tex]\begin{gathered} \frac{y-3}{5}=\frac{5x}{5} \\ x=\frac{y-3}{5} \end{gathered}[/tex]

We use each output value to find each input value.

For y = 13.

[tex]x=\frac{13-3}{5}=\frac{10}{5}=2[/tex]

The first input is 2.

For y = 28.

[tex]x=\frac{28-3}{5}=\frac{25}{5}=5[/tex]

The second input is 5.

For y = 33.

[tex]x=\frac{33-3}{5}=\frac{30}{5}=6[/tex]

The third input is 6.

For y = 48.

[tex]x=\frac{48-3}{5}=\frac{45}{5}=9[/tex]

The fourth input is 9.

Therefore, the input values are 2, 5, 6, and 9.

ACCESS MORE
EDU ACCESS
Universidad de Mexico