If the area of the smaller pentagon is 232 m^2, find the value of the larger pentagon

If we have the lenght of the sides, the ratio of the smaller pentagon and the larger pentagon is:
[tex]\frac{28}{35}=\frac{4}{5}[/tex]As in the area we work with 2 dimensions, the ratio is:
[tex](\frac{4}{5})^2=\frac{4^2}{5^2}=\frac{16}{25}[/tex]The smaller pentagon has 232 m^2, then:
[tex]\frac{16}{25}=\frac{232}{x}[/tex]x represents the area of the larger pentagon
[tex]16x=232\cdot25[/tex][tex]x=\frac{232\cdot25}{16}[/tex][tex]x=362.5[/tex]The area of the larger pentagon is 362.5 m^2