Respuesta :

Given the following quadratic function:

[tex]f(x)=ax^2+bx+c[/tex]

We can find the vertex with the following general rule:

[tex]V=(-\frac{b}{2a},f(-\frac{b}{2a}))[/tex]

in this case, we have the following quadratic function:

[tex]f(x)=3x^2+18x+32[/tex]

then, the coefficients a,b and c are:

[tex]\begin{gathered} a=3 \\ b=18 \\ c=32 \end{gathered}[/tex]

now, we can calculate first the x coordinate of the vertex:

[tex]-\frac{b}{2a}=-\frac{18}{2(3)}=-\frac{18}{6}=-3[/tex]

then, we have to evaluate x = -3 on the function to get the y coordinate:

[tex]\begin{gathered} f(-3)=3(-3)^2+18(-3)+32 \\ =3(9)-54+32=27-54+32=5 \\ f(-3)=5 \end{gathered}[/tex]

therefore, the vertex of the function f(x) is:

[tex]V=(-3,f(-3))=(-3,5)[/tex]

ACCESS MORE
EDU ACCESS