Given:
The mass of Jack is,
[tex]m_1=45\text{ kg}[/tex]The initial speed Jack is,
[tex]u_1=2\text{ m/s}[/tex]The mass of Leon is
[tex]m_2=90\text{ kg}[/tex]The initial speed of Leon is
[tex]u_2=7.0\text{ m/s}[/tex]The final speed of Leon after the collision is
[tex]v_2=1.0\text{ m/s}[/tex]To find:
How fast is Jack knocked backward?
Explanation:
The initial momentum of Jack and Leon is,
[tex]\begin{gathered} P_i=m_1u_1+m_2u_2 \\ =45\times2+90\times7.0 \\ =720\text{ kg.m/s} \end{gathered}[/tex]If the speed Jack after the collision is
[tex]v_1[/tex]the final momentum is
[tex]\begin{gathered} P_f=m_1v_1+m_1v_2 \\ =45\times v_1+90\times1.0 \\ =45v_1+90\text{ kg.m/s} \end{gathered}[/tex]Applying, The total linear momentum before the collision is the sum of the momentums of each of the football players. So,
[tex]\begin{gathered} 45v_1+90=720 \\ v_1=\frac{720-90}{45} \\ v_1=14\text{ m/s} \end{gathered}[/tex]Hence, Jack is knocked backward at 14 m/s.