Respuesta :

Given:

[tex]f(x)=\frac{x}{x+1}[/tex]

For inverse function the value of x,y is interchange then solve for y :

[tex]\begin{gathered} f(x)=y \\ y=\frac{x}{x+1} \\ x\rightarrow y \\ y\rightarrow x \end{gathered}[/tex]

[tex]\begin{gathered} y=\frac{x}{x+1} \\ so\colon \\ x=\frac{y}{y+1} \\ x(y+1)=y \\ y=xy+x \\ y-xy=x \\ y(1-x)=x \\ y=\frac{x}{1-x} \end{gathered}[/tex]

So inverse function is:

[tex]\begin{gathered} f(x)=\frac{x}{x+1} \\ f^{-1}(x)=\frac{x}{1-x} \end{gathered}[/tex]

RELAXING NOICE
Relax