Hello!
We have the following equation:
[tex]e^{4x}−6e^{2x}=16[/tex]First, we can rewrite this expression to obtain the same base in both variables, look:
[tex](e^{2x})^2−6(e^{2x})=16[/tex][tex](e^{2x})^2−6(e^{2x})=16[/tex][tex](e^{2x})^2−6(e^{2x})=16[/tex]To make it easier, we can replace where's e^{2x} with any letter. I'll replace it with s, look:
[tex]\begin{gathered} (e^{2x})^2-6(e^{2x})=16 \\ \\ \left(e^{2x}\right)=s \\ \\ s^2−6s=16 \end{gathered}[/tex]Now, let's solve this quadratic equation:
[tex]\begin{gathered} s^2-6s=16 \\ s^2-6s-16=0 \end{gathered}[/tex][tex]\begin{gathered} s=\frac{-b\pm\sqrt{b^2-4ac}}{2a}=\frac{-(-6)\pm\sqrt{(-6)^2-4\times1\times(-16)}}{2\times1} \\ \\ =\frac{6\pm\sqrt{36^+64}}{2\times1}=\frac{6\pm\sqrt{100}}{2}=\frac{6\pm10}{2} \\ \\ s^{\prime}=\frac{6+10}{2}=\frac{16}{2}=8 \\ \\ s^{\prime}^{\prime}^=\frac{6-10}{2}=-\frac{4}{2}=-2 \end{gathered}[/tex]At this moment, we obtained two possible values for this equation: -2 and 8.
Now, let's cancel the replacement that we did before. s will turn back to be e^{2x}.
[tex]\begin{gathered} e^{2x}=-2\notin\mathrm{R} \\ e^{2x}=8\text{ }\in R \\ \end{gathered}[/tex]So, let's solve the second line:
[tex]\begin{gathered} e^{2x}=8 \\ \ln(e^{2x})=\ln(8) \\ 2x=\ln(2^3) \\ 2x=3\ln(2) \\ x=\frac{3\ln(2)}{2} \end{gathered}[/tex]Using a calculator, we will obtain x = 1.03972.
As we have to round to three decimal places, the answer will be x = 1.040.