Given:
There are given that the slope and the point:
[tex]\begin{gathered} m=-\frac{7}{2} \\ point:\left(-8,-4\right) \end{gathered}[/tex]Explanation:
To find the equation, first, we need to see the formula for slope-intercept form:
So,
From the slope-intercept formula;
[tex]y=mx+b[/tex]Where,
[tex]\begin{gathered} m=-\frac{7}{2} \\ \lparen x,y)=\left(-8,-4\right) \end{gathered}[/tex]Now,
We need to find the value of b by using given information:
So,
Put all the given values into the given slope-intercept form:
[tex]\begin{gathered} y=mx+b \\ -4=-\frac{7}{2}\left(-8\right)+b \\ -4=28+b \\ b=-32 \end{gathered}[/tex]Then,
Put the value of b and m into the slope-intercept form;
So,
[tex]\begin{gathered} y=mx+b \\ y=-\frac{7}{2}x+\left(-32\right) \\ y=-\frac{7}{2}x-32 \end{gathered}[/tex]Final answer:
Hence, the equation of a line is shown below;
[tex]y=-\frac{7}{2}x-32[/tex]