Find the equation of a line with given slope and containing given point. Write the equation in sole-intercept m= -7/2, point (-8,-4)

Respuesta :

Given:

There are given that the slope and the point:

[tex]\begin{gathered} m=-\frac{7}{2} \\ point:\left(-8,-4\right) \end{gathered}[/tex]

Explanation:

To find the equation, first, we need to see the formula for slope-intercept form:

So,

From the slope-intercept formula;

[tex]y=mx+b[/tex]

Where,

[tex]\begin{gathered} m=-\frac{7}{2} \\ \lparen x,y)=\left(-8,-4\right) \end{gathered}[/tex]

Now,

We need to find the value of b by using given information:

So,

Put all the given values into the given slope-intercept form:

[tex]\begin{gathered} y=mx+b \\ -4=-\frac{7}{2}\left(-8\right)+b \\ -4=28+b \\ b=-32 \end{gathered}[/tex]

Then,

Put the value of b and m into the slope-intercept form;

So,

[tex]\begin{gathered} y=mx+b \\ y=-\frac{7}{2}x+\left(-32\right) \\ y=-\frac{7}{2}x-32 \end{gathered}[/tex]

Final answer:

Hence, the equation of a line is shown below;

[tex]y=-\frac{7}{2}x-32[/tex]

ACCESS MORE
EDU ACCESS