From the problem, we have :
[tex]24\frac{1}{2}\div3\frac{1}{4}[/tex]The given fractions are in mixed form. We need to convert it or rewrite as an improper fractions.
Note that in converting mixed fraction to improper fraction :
[tex]a\frac{b}{c}=\frac{ac+b}{c}[/tex][tex]\begin{gathered} 24\frac{1}{2}=\frac{24(2)+1}{2}=\frac{49}{2} \\ 3\frac{1}{4}=\frac{3(4)+1}{4}=\frac{13}{4} \end{gathered}[/tex]The expression will be :
[tex]\frac{49}{2}\div\frac{13}{4}[/tex]Next is to rewrite the expression as multiplication.
In rewriting division into multiplication :
[tex]\frac{a}{b}\div\frac{c}{d}\Rightarrow\frac{a}{b}\times\frac{d}{c}[/tex]The numerator and denominator of the 2nd term will interchange.
from c/d to d/c.
So it follows that :
[tex]\frac{49}{2}\div\frac{13}{4}\Rightarrow\frac{49}{2}\times\frac{4}{13}[/tex]Simplify the expression :
[tex]\begin{gathered} \frac{49}{2}\times\frac{4}{13}=\frac{49}{\cancel{2}}\times\frac{2(\cancel{2})}{13}=\frac{49\times2}{13} \\ \Rightarrow\frac{98}{13} \end{gathered}[/tex]Rewriting as mixed fraction :
[tex]\frac{98}{13}=7\frac{7}{13}[/tex]The answer is 98/13 or 7 7/13