Respuesta :

From the problem, we have :

[tex]24\frac{1}{2}\div3\frac{1}{4}[/tex]

The given fractions are in mixed form. We need to convert it or rewrite as an improper fractions.

Note that in converting mixed fraction to improper fraction :

[tex]a\frac{b}{c}=\frac{ac+b}{c}[/tex][tex]\begin{gathered} 24\frac{1}{2}=\frac{24(2)+1}{2}=\frac{49}{2} \\ 3\frac{1}{4}=\frac{3(4)+1}{4}=\frac{13}{4} \end{gathered}[/tex]

The expression will be :

[tex]\frac{49}{2}\div\frac{13}{4}[/tex]

Next is to rewrite the expression as multiplication.

In rewriting division into multiplication :

[tex]\frac{a}{b}\div\frac{c}{d}\Rightarrow\frac{a}{b}\times\frac{d}{c}[/tex]

The numerator and denominator of the 2nd term will interchange.

from c/d to d/c.

So it follows that :

[tex]\frac{49}{2}\div\frac{13}{4}\Rightarrow\frac{49}{2}\times\frac{4}{13}[/tex]

Simplify the expression :

[tex]\begin{gathered} \frac{49}{2}\times\frac{4}{13}=\frac{49}{\cancel{2}}\times\frac{2(\cancel{2})}{13}=\frac{49\times2}{13} \\ \Rightarrow\frac{98}{13} \end{gathered}[/tex]

Rewriting as mixed fraction :

[tex]\frac{98}{13}=7\frac{7}{13}[/tex]

The answer is 98/13 or 7 7/13

RELAXING NOICE
Relax