Simplify the following expression using the change of base formula:

Given: The logarithm below
[tex]log_{27}729[/tex]To Determine: The solution of the given logarithm
Solution
Using change of base formula
[tex]log_ab=\frac{log_xb}{log_xa}[/tex]Let the common base be 3. Therefore, the given logarithm becomes
[tex]log_{27}729=\frac{log_3729}{log_327}[/tex][tex]\begin{gathered} 729=3^6 \\ 27=3^3 \end{gathered}[/tex]Therefore,
[tex]\begin{gathered} log_{27}729=\frac{log_3729}{log_327} \\ log_{27}729=\frac{log_33^6}{log_33^3} \end{gathered}[/tex]Given the log rule below
[tex]logb^a=alogb[/tex]The given logarithms becomes
[tex]log_{27}729=\frac{6log_33}{3log_33}[/tex]Given the log rule below
[tex]log_aa=1[/tex]Apply the rule to the given log
[tex]\begin{gathered} log_{27}729=\frac{6\times1}{3\times1} \\ log_{27}729=\frac{6}{3} \\ log_{27}729=2 \end{gathered}[/tex]Hence, the solution to the given logarithm is 2