Tenemos el siguiente sistema el cual se muestra en el siguiente diagrama
Vamos a analizar cada uno de los carretones
Carreton 300kg
Vamos a realizar el analisis de fuerzas
[tex]800\cos (15)-F_{R1}+F=a_1m_1[/tex][tex]N=W-800\sin (15)[/tex]para el otro carro tenemos
[tex]F-F_{R2}=a_2m_2_{}[/tex][tex]N=W[/tex]calculamos las fuerzas de fricción
[tex]F_{R1}=((300\cdot9.8)-(800\sin 15))\cdot0.2=546.589[/tex][tex]F_{R2}=200\cdot9.8\cdot0.1=196[/tex]Tenemos el siguiente sistema de ecuaciones,
[tex]800\cos (15)-F_{R1}-F=m_1a_1[/tex][tex]F=F_{R2}+a_2m_2[/tex][tex]8\cos (15)-F_{R1}-(F_{R2}+a_2m_2)=a_1m_1[/tex]entonces a=a1=a2 y m1 y m2 corresponden a las masas de los carretones
[tex]800\cos (15)-546.589-196=a(300+200)[/tex][tex]30.15=a(500)[/tex]despejamos a
[tex]a=\frac{30.15}{500}=0.06[/tex]La aceleración del sistema es 0.06 m/s^2