Given
Riley drove 112.5 miles in the good weather ans 45 miles in the storm.
Time taken = 4 hour
Find
speed driving in the storm.
Explanation
Let speed of Riley in the storm = x mph.
Let speed of Riley in good weather = x + 15 mph.
Time taken =
[tex]\frac{Distance}{Speed}[/tex]Time taken to drive 112.5 miles in good weather =
[tex]t_1=\frac{112.5}{x+15}.........................................({1})[/tex]Time Taken to drive 45 miles in storm =
[tex]t_2=\frac{45}{x}.............................................({2})[/tex]Now, the total time t, =
[tex]\begin{gathered} 4=\frac{112.5}{x+15}+\frac{45}{x} \\ 4=\frac{112.5x+45(x+15)}{x(x+15)} \\ 4\lbrack x(x+15)\rbrack=112.5x+45x+675 \\ 4x^2+60x=112.5x+45x+675 \\ 4x^2-97.5x-675=0 \end{gathered}[/tex]by solving this quadratic equation , we get
[tex]x=30[/tex]Final Answer
The speed of Riley driving in the storm = 30 mph