Factor x3 – 3x2 – 4x + 12 completely using long division if (x – 2) is a factor. (x – 2)(x – 2)(x + 3) option 1(x – 2)(x + 2)(x + 3) option 2(x – 2)(x + 2)(x – 3) option 3 (x – 2)(x – 2)(x – 3) option 4

Respuesta :

Given the cubic function

[tex]x^3-3x^2-4x+12[/tex]

To get the other factors using the long division method

Having obtained the result of

[tex]\begin{gathered} div\text{iding } \\ x^3-3x^2-4x+12 \\ by \\ x-2 \end{gathered}[/tex]

which gives x²-x-6

The next step will be to factor x²-x-6

[tex]x^2-x-6=(x+2)(x-3)[/tex]

Combining the factors, we will obtain

[tex](x-2)(x+2)(x-3)[/tex]

The answer is option 3

Ver imagen TirthO248726
RELAXING NOICE
Relax