Find two vectors in opposite directions that are orthogonal to the vector u. (There are many correct answers.)

Given:
The given vector is u=<7,9>.
Required:
We need to find two vectors in opposite directions that are orthogonal to the vector u.
Explanation:
Recall that two vectors are orthogonal if their dot product equals 0.
Let v be the orthogonal vector to u.
[tex]u\cdot v=0[/tex][tex]<7,9>\cdot=0[/tex][tex]7v_1+9v_2=0[/tex][tex]7v_1+9v_2-9v_2=-9v_2[/tex][tex]7v_1=-9v_2[/tex][tex]\frac{7v_1}{7}=\frac{-9v_2}{7}[/tex][tex]v_1=-\frac{9}{7}v_2[/tex][tex]v=<-\frac{9}{7}v_2,v_2>[/tex][tex]Let\text{ }v_2=7\text{ and substitute in the vector v.}[/tex][tex]v=<-\frac{9}{7}\times7,7>=<-9,7>[/tex][tex]Let\text{ }v_2=-7\text{ and substitute in the vector v.}[/tex][tex]v=<-\frac{9}{7}\times(-7),-7>=<9,-7>[/tex]Final answer:
[tex]negative\text{ x-component, positive y-component=<-9,7>}[/tex][tex]positive\text{ x-component, negative y-component=<9,-7>}[/tex]