Answer:
400 square cm
Explanation:
The surface area of the figure is composed of the area of the two triangular, and three rectangular sides.
The surface area of the triangular sides is
[tex]2\times(\frac{1}{2}\cdot8\operatorname{cm}\cdot15\operatorname{cm})_{}=120\operatorname{cm}^2[/tex]The surface area of the two rectangular bases is
[tex](15\operatorname{cm}\times7\operatorname{cm})+(8\operatorname{cm}\times7\operatorname{cm})=161\operatorname{cm}^2[/tex]And the surface area of the lateral side is
[tex]17\operatorname{cm}\times7\operatorname{cm}=119\operatorname{cm}^2[/tex]Therefore, the total surface area of the prism is
[tex]120\operatorname{cm}+161\operatorname{cm}+119\operatorname{cm}=400\operatorname{cm}[/tex]The surface area of the triangular prism is 400 square cm.