Respuesta :

Given function is

[tex]f(x)=25x^2[/tex]

Eventually overtake means the function gets the value of f(x) at some value of x.

Consider the first option

[tex]g(x)=5(2)^x[/tex]

Comparing the functions

[tex]5(2)^x>25x^2[/tex]

[tex](2)^x>5x^2[/tex][tex]xIn\text{ 2>2In (}\sqrt[]{5}x)[/tex]

[tex]\frac{x}{\text{In (}\sqrt[]{5}x)}>\frac{2}{In2}[/tex]

[tex]\frac{x}{\text{In (}\sqrt[]{5}x)}>1[/tex]

It is true, hence g(x) eventually overtakes f(x).

Consider the function

[tex]h(x)=5^x[/tex]

It is increasing function, it also eventually overtakes the function f(x).

Consider the function

[tex]j(x)=x^2+5[/tex]

Comparing the function with f(x), we get

[tex]x^2+5>25x^2[/tex]

[tex]1+\frac{5}{x^2}>25[/tex]

This is not true, hence j(x) is not overtaking the function f9x).

Consider the function

[tex]k(x)=(\frac{5}{2})^x[/tex]

Comparing the function with f(x), we get

[tex](\frac{5}{2})^x>25x^2[/tex]

Taking log on both sides, we get

[tex]xIn\frac{5}{2}^{}>2In5x[/tex]

[tex]\frac{x}{In5x}^{}>\frac{2}{In(\frac{5}{2})}[/tex][tex]\text{Let x=}\frac{1^k}{5},\text{ we get}[/tex]

[tex]\frac{1^k}{5k}^{}>2[/tex]

It is not true for any k value, so the function k(x) is not overtaking the function f(x).

Consider the function

[tex]m(x)=5+2^x[/tex]

Comparing the function with f(x), we get

[tex]5+2^x>25x^2[/tex]

[tex]2^x>(5x)^2-5[/tex]

It is true for some value of x.

Hence the function m(x) overtakes the function f(x).

Consider the function

[tex]n(x)=2x^2+5[/tex]

Comparing the function with f(x), we get

[tex]2x^2+5>25x^2[/tex]

[tex]5>23x^2[/tex]

It is not true for any value of x.

Hecne the function n(x) not overtake the function f(x).

Hence the following functions are overtaken f(x).

g(x), h(x), m(x).

ACCESS MORE
EDU ACCESS