Find the distance d between 21 = (-1+ 8i) and z2 = (-3 – 2i).Express your answer in exact terms and simplify, if needed.d=

The rule of the distance between two points is
[tex]d=\sqrt[]{(x_2-x_1)^2+(y_2-y_1)^2}[/tex]Since the given points are
[tex]z_1=(-1,8i),z_2=(-3,-2i)[/tex]Then, let
[tex]\begin{gathered} x_1=-1,x_2=-3 \\ y_1=8i,y_2=-2i \end{gathered}[/tex]Substitute them in the rule above
[tex]\begin{gathered} d=\sqrt[]{(-3-\lbrack-1\rbrack)^2+(-2i-8i)^2} \\ d=\sqrt[]{(-3+1)^2+(-10i)^2} \\ d=\sqrt[]{(-2)^2+(100i)^2} \end{gathered}[/tex]Remember i^2 = -1, then
[tex]\begin{gathered} d=\sqrt[]{4+(100i^2)} \\ i^2=-1 \\ d=\sqrt[]{4+100(-1)} \\ d=\sqrt[]{4-100} \\ d=\sqrt[]{-96} \end{gathered}[/tex]Make the negative number represented by i
[tex]\begin{gathered} d=\sqrt[]{96}\times\sqrt[]{-1} \\ \sqrt[]{96}=4\sqrt[]{6},\sqrt[]{-1}=i \\ d=4\sqrt[]{6}i \end{gathered}[/tex]The distance between z1 and z2 is
[tex]d=4\sqrt[]{6}i[/tex]