Average rate of change = -1
STEP - BY STEP EXPLANATION
What to find?
The average rate of change.
Given:
[tex]g(x)=-1x^3-4[/tex]x₁= -1 and x₂=1
To solve the given problem, we will follow the steps below:
Step 1
Obtain the value of g(x₁) by substituting x₁=-1 into the function given.
[tex]\begin{gathered} g(x_1)=g(-1)=-1(-1)^3-4 \\ \\ =-1(-1)-4 \\ \\ =1-4 \\ =-3 \end{gathered}[/tex]Step 2
Calculate the value of g(x₂) by substituting x₂=1 into the given function.
[tex]\begin{gathered} g(x_2)=g(1)=-1(1)^3-4 \\ \\ =-1-4 \\ =-5 \end{gathered}[/tex]Step 3
Recall the formula for calculating average rate of change.
[tex]\text{Average rate of change=}\frac{g(x_2)-g(x_1)}{x_2-x_1}[/tex]Step 4
Substitute the values and simplify.
[tex]\text{Average rate of change=}\frac{-5-(-3)}{1-(-1)}[/tex][tex]=\frac{-5+3}{2}[/tex][tex]\begin{gathered} =\frac{-2}{2} \\ \\ =-1 \end{gathered}[/tex]Therefore, the average rate of change is -1