Respuesta :

Average rate of change = -1

STEP - BY STEP EXPLANATION

What to find?

The average rate of change.

Given:

[tex]g(x)=-1x^3-4[/tex]

x₁= -1 and x₂=1

To solve the given problem, we will follow the steps below:

Step 1

Obtain the value of g(x₁) by substituting x₁=-1 into the function given.

[tex]\begin{gathered} g(x_1)=g(-1)=-1(-1)^3-4 \\ \\ =-1(-1)-4 \\ \\ =1-4 \\ =-3 \end{gathered}[/tex]

Step 2

Calculate the value of g(x₂) by substituting x₂=1 into the given function.

[tex]\begin{gathered} g(x_2)=g(1)=-1(1)^3-4 \\ \\ =-1-4 \\ =-5 \end{gathered}[/tex]

Step 3

Recall the formula for calculating average rate of change.

[tex]\text{Average rate of change=}\frac{g(x_2)-g(x_1)}{x_2-x_1}[/tex]

Step 4

Substitute the values and simplify.

[tex]\text{Average rate of change=}\frac{-5-(-3)}{1-(-1)}[/tex][tex]=\frac{-5+3}{2}[/tex][tex]\begin{gathered} =\frac{-2}{2} \\ \\ =-1 \end{gathered}[/tex]

Therefore, the average rate of change is -1

RELAXING NOICE
Relax