Respuesta :

We are given that BC has one endpoint B(3, 2) and a midpoint T(6, -2)

We are asked to find the coordinates of the other endpoint C.

Recall that the midpoint formula is given by

[tex]T(x,y)=(\frac{x_1+x_2}{2},\frac{y_1+y_2}{2})[/tex]

Where

[tex]\begin{gathered} T(x,y)=(6,-2) \\ B(x_1,y_1)=(3,2) \end{gathered}[/tex]

So, the other endpoint C is

[tex]x=\frac{x_1+x_2}{2},y=\frac{y_1+y_2}{2}[/tex]

Substitute the given values,

[tex]6=\frac{3+x_2}{2},-2=\frac{2+y_2}{2}[/tex]

Simplify,

[tex]\begin{gathered} 2\cdot6=3+x_2,-2\cdot2=2+y_2 \\ 12=3+x_2,-4=2+y_2 \\ x_2=12-3,y_2=-4-2 \\ x_2=9,y_2=-6 \end{gathered}[/tex]

Therefore, the coordinates of the endpoint C are

[tex]C(x_2,y_2)=(9,-6)[/tex]

Bonus:

Let us verify whether we got the correct coordinates or not.

[tex]\begin{gathered} T(x,y)=(\frac{x_1+x_2}{2},\frac{y_1+y_2}{2}) \\ T(x,y)=(\frac{3+9}{2},\frac{2-6}{2}) \\ T(x,y)=(\frac{12}{2},\frac{-4}{2}) \\ T(x,y)=(6,-2) \end{gathered}[/tex]

Hence, we got the same midpoint as given in the question.

ACCESS MORE
EDU ACCESS