Respuesta :

Solution:

Given;

[tex](-36)^{\frac{1}{2}}[/tex]

We would apply indices law where;

[tex](ab)^c=a^c\times b^c[/tex]

Thus;

[tex]\begin{gathered} (-36)^{\frac{1}{2}}=(-1\times36)^{\frac{1}{2}} \\ (-1\times36)^{\frac{1}{2}}=(-1)^{\frac{1}{2}}\times(6^2)^{\frac{1}{2}} \\ \end{gathered}[/tex]

We would apply the power law of indices;

[tex](a^b)^c=a^{b\times c}=a^{bc}[/tex]

Then, we have;

[tex]\begin{gathered} (-1\times36)^{\frac{1}{2}}=i\times6^{} \\ (-1\times36)^{\frac{1}{2}}=6i \\ (-36)^{\frac{1}{2}}=6i \\ \text{Where;} \\ i\text{ is a complex number} \end{gathered}[/tex]

FINAL ANSWER:

[tex]\text{None}[/tex]

RELAXING NOICE
Relax