ANSWER:
General solution:
[tex]x=\frac{\pi}{6}+n\pi[/tex]
Solution over the given interval:
[tex]x=\frac{\pi}{6}[/tex]
EXPLANATION:
Let's solve for tan(x),
[tex]\begin{gathered} 2\sqrt[]{3}\tan (x)-2=0\rightarrow2\sqrt[]{3}\tan (x)=2 \\ \rightarrow\sqrt[]{3}\tan (x)=1\rightarrow\tan (x)=\frac{1}{\sqrt[]{3}} \\ \\ \Rightarrow\tan (x)=\frac{\sqrt[]{3}}{3} \end{gathered}[/tex]
Now, we'll use the inverse trigonometric function for tangent:
[tex]\begin{gathered} \tan (x)=\frac{\sqrt[]{3}}{3}\rightarrow x=\tan ^{-1}(\frac{\sqrt[]{3}}{3}) \\ \\ \Rightarrow x=\frac{\pi}{6} \end{gathered}[/tex]
Now, since tan(x) has a period of pi, the general solution for the equation is:
[tex]x=\frac{\pi}{6}+n\pi,n\in Z[/tex]
For the interval [0,pi] we'll have the solution:
[tex]x_{}=\frac{\pi}{6}[/tex]