3. Compute the equation of the regression line for a dataset that has the statistics given below. Round the values of a and b to two decimal places. ¯ x = 4, s x = 4, ¯ y = 284, s y = 108, r = 0.63 The regression line is ˆ y = x +

Given that
[tex]\bar{x}=4,S_x=4,\text{ }\bar{\text{y}}=284,S_y=108,\text{ r=0.63}[/tex]The formula for the linear regression line is,
[tex]y=a+bx[/tex]Where
[tex]b=r\frac{S_y}{S_x}[/tex]Therefore,
[tex]\begin{gathered} b=0.63\times\frac{108}{4}=0.63\times27=17.01 \\ \therefore b=17.01 \end{gathered}[/tex]Also,
[tex]a=\bar{y}-b\bar{x}[/tex]Solving for a
[tex]\begin{gathered} a=284-(17.01\times4)=284-68.04=215.96 \\ \therefore a=215.96 \end{gathered}[/tex]Now, Substituting the values of a = 215.96 AND b = 17.01 into the general equation
[tex]\hat{y}=17.01x+215.96[/tex]Hence,
[tex]\hat{y}=17.01x+215.96[/tex]