Respuesta :

The expression given in the question is

[tex]P(1+\frac{r}{k})^{kn}[/tex]

Where,

[tex]\begin{gathered} P=7000 \\ r=10\text{ \%}=\frac{10}{100}=0.1 \\ k=2 \\ n=21 \end{gathered}[/tex]

By substituting the values, we will have

[tex]\begin{gathered} P(1+\frac{r}{k})^{kn} \\ =7000(1+\frac{0.1}{2})^{2\times21} \\ =7000(1+0.05)^{42} \end{gathered}[/tex]

By simplifying further, we will have

[tex]\begin{gathered} 7000(1+0.05)^{42} \\ =7000(1.05)^{42} \\ =7000\times7.761587555 \\ =54,331.11 \end{gathered}[/tex]

Therefore,

The final answer is = 54,331.11

ACCESS MORE
EDU ACCESS
Universidad de Mexico